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ABSTRACT

We consider convex sets whose modulus of convexity is uniformly qua-

dratic. First, we observe several interesting relations between different

positions of such “2-convex” bodies; in particular, the isotropic position

is a finite volume-ratio position for these bodies. Second, we prove that

high dimensional 2-convex bodies posses one-dimensional marginals that

are approximately Gaussian. Third, we improve the known bounds on the

isotropic constant of quotients of subspaces of Lp and Sm

p
, the Schatten

Class space, for 1 < p ≤ 2.
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1. Introduction

The purpose of this note is to collect several interesting facts related to the

distribution of volume in high dimensional 2-convex bodies. Suppose that

K ⊂ R
n is a centrally-symmetric (i.e. K = −K) convex body (i.e. a convex,

compact set with non-empty interior). Let ‖ ·‖K be the norm on R
n whose unit

ball is K. The modulus of convexity of K is the function:

(1.1) δK(ε) = inf
{

1 −
∥∥∥
x+ y

2

∥∥∥
K

: ‖x‖K , ‖y‖K ≤ 1, ‖x− y‖K ≥ ε
}
,

defined for 0 < ε ≤ 2. We say that K is “2-convex with constant α” (see, e.g.,

[LT79, Chapter 1.e]) if for all 0 < ε ≤ 2,

(1.2) δK(ε) ≥ αε2.

Note that this should not be confused with the notions of p-convexity or q-

concavity (e.g., [LT79, Chapter 1.d]) defined for Banach lattices. Being 2-convex

with constant α is a linearly invariant property. Furthermore, as is evident from

the definitions, if K is 2-convex with constant α, so is K∩E for any subspace E.

Thus sections of a convex body inherit the 2-convexity properties of the body.

The same holds for projections (see, e.g., Lemma 3.4 below). A basic example

of 2-convex bodies are unit balls of Lp spaces for 1 < p ≤ 2, in which case α

is of the order of p− 1 (e.g., [LT79, Chapter 1.e]). Consequently, also sections,

projections, and sections of projections of Lp-balls are 2-convex bodies, with

constants that depend solely on p.

It is well-known that the uniform measure on a 2-convex body is “well-

behaved”, in many senses (see, e.g., [GM87] [Sch95] and [BL00b]). Questions

on distribution of mass in high-dimensional convex sets regained some interest

in the last few years, and partial progress was obtained. We approach the study

of mass distribution in 2-convex sets, in view of these developments. Arguably,

the most basic question regarding volume distribution in high-dimensional con-

vex sets is the Slicing Problem, or Hyperplane Conjecture. This question asks

whether for any convex body K ⊂ R
n of volume one, there exists a hyperplane

H ⊂ R
n such that Vol (K ∩H) > c, for some universal constant c > 0. Here and

henceforth, Vol (A) or |A| for short, denotes the volume of A ⊂ R
n in its affine

hull. In the category of 2-convex bodies, a positive answer to this question was

provided by Schmuckenschläger [Sch95]. We provide a more direct approach to

Schmuckenschläger’s result, that is based on an argument of [AdRBV98].
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Proposition 1.1: Let K ⊂ R
n be a centrally-symmetric convex body of vol-

ume one. Suppose K is 2-convex with constant α. Then there exists a hyper-

plane H ⊂ R
n such that:

Vol (K ∩H) ≥ c
√
α,

where c > 0 is a universal constant.

A centrally-symmetric convex K ⊂ R
n of volume one is said to be isotropic

or in isotropic position, if for any θ ∈ R
n:

∫

K

〈x, θ〉2dx = LK |θ|2,

where LK is some quantity, independent of θ, and | · | is the Euclidean norm.

In that case, the isotropic constant of K is defined as LK . It is well known

(see, e.g., [MP88]) that for any centrally-symmetric convex K ⊂ R
n, there

exists a linear transformation such that K̃ = T (K) is isotropic. Moreover, this

map T is unique up to orthogonal transformations. We therefore define the

isotropic constant of an arbitrary centrally-symmetric convex body K ⊂ R
n, to

be LK = LK̃ , where K̃ is an isotropic linear image of K. An observation of

Hensley [Hen80], is that when K is isotropic, for any hyperplane H through the

origin:

c1/LK ≤ Vol (K ∩H) ≤ c2/LK ,

where c1, c2 > 0 are universal constants. Based on this, the Slicing Problem

may be reformulated as follows (e.g., [MP88]): Is it true that for any dimension

n and any centrally-symmetric convex body K ⊂ R
n, we have that LK ≤ C,

where C > 0 is a universal constant?

As a by-product of our methods, we improve the known bounds for the

isotropic constant of the unit balls of quotients of subspaces of Lp for 1 < p ≤ 2,

and establish the same bound for arbitrary quotients of subspaces of lp-Schatten-

Class spaces of m by m matrices, denoted Sm
p (see Section 3 for definitions). For

a Banach Space X , we denote by SQn(X) the family of all centrally-symmetric

convex bodies K ⊂ R
n, such that K is the unit ball of some subspace of a

quotient of X .

Proposition 1.2: Let 1 < p ≤ 2, let X = Lp or X = Sm
p , and suppose that

K ∈ SQn(X). Then,

(1.3) LK ≤ C
√
q,
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where q = p∗ = p/(p− 1) and C > 0 is a universal constant.

Junge [Jun94] has proved a version of (1.3) with q in place of
√
q, for X = Lp.

For X = Sm
p and 1 ≤ p ≤ 2, a universal bound on LK was established in

[KMP98] when K is the unit ball of X and in [GP04] when K is the unit ball

of certain specific subspaces of X .

In addition to the isotropic position, there are several other important Eu-

clidean structures that are associated with a given convex body, such as John’s

position, minimal mean-width position, ℓ-position, (regular) M -position, etc.

In general, the relations between these various positions are not clear. See

[BKM03] for an equivalence of the hyperplane conjecture to a certain putative

relation between the isotropic position and M -position. However, in the class

of 2-convex bodies, the following holds:

Proposition 1.3: Let K ⊂ R
n be a 2-convex body with constant α and of

volume 1. If K is in isotropic position then

c
√
α
√
nDn ⊂ K,

where Dn is the unit Euclidean ball in R
n and c > 0 is a universal constant.

That is, the isotropic position of a 2-convex body is a finite volume-ratio

position. The volume-ratio of a centrally-symmetric convex body K ⊂ R
n is

defined as

(1.4) v.r.(K) = min
E⊂K

(|K|/|E|)1/n,

where the minimum runs over all ellipsoids that are contained in K. If

v.r.(K) < C, for some universal constant C, it is customary to say that K

is a finite volume-ratio body. When the minimum over all Euclidean balls

is bounded by a universal constant, we will say that K is in a finite volume-

ratio position. Note that c1 < |√nDn|1/n < c2 for some universal constants

c1, c2 > 0, so Proposition 1.3 implies that the isotropic position is a finite

volume-ratio position.

This conclusion is clearly false for general convex bodies, even for convex

bodies whose distance to the Euclidean ball is universally bounded (see the ex-

ample after Lemma 2.3 below). In Section 4 we establish further rigid relations

between various positions of 2-convex bodies, that cannot hold for arbitrary
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convex bodies. In particular, recall that K is said to be in John’s maximal-

volume ellipsoid position when the minimum in (1.4) is attained by a Euclidean

ball. We will see the following

Proposition 1.4: Let K ⊂ R
n be a 2-convex body with constant α and of

volume 1. If K is in John’s maximal-volume ellipsoid position, then

(1.5)

( ∫

K

|x|2dx
)1/2

≤ C

α

√
n,

where C > 0 is a universal constant.

The latter is in a sense a converse to Proposition 1.3, since (1.5) implies that

K is “essentially” isotropic. To see this, note (e.g., [MP88]) that the isotropic

position minimizes the value of
∫

T (K)
|x|2dx, over all volume 1 affine images

T (K) of K, and in that case we have

inf

( ∫

T (K)

|x|2dx
)1/2

=
√
nLK .

In addition to being an “essentially” isotropic position, we show in Section 4

that John’s position is in fact an “essentially” minimal mean-width position and

a 2-regular M-position (see Section 4 for definitions). A complete list of other

relations between the aforementioned various positions is given at the end of

Section 4.

An additional interesting volumetric question, is the so-called “Central Limit

Property of Convex Bodies”. Let X denote a uniformly distributed vector inside

a convex set K ⊂ R
n of volume one. In its weakest form, a conjecture of Antilla,

Ball and Perissinaki [ABP03] and Brehm and Voigt [BV00], states that for some

non-zero vector θ ∈ R
n, the random variable 〈X, θ〉 is very close to a Gaussian

random variable. That is, the total variation distance between the random

variable 〈X, θ〉 and a corresponding Gaussian random variable, is smaller than

εn, where εn is a sequence tending to zero, that depends solely on n. In this

note, we verify the following (see Theorem 5.5 for an exact formulation)

Proposition 1.5: The “Central Limit Property” holds true for arbitrary 2-

convex bodies.

In [ABP03], the existence of approximately Gaussian marginals of 2-convex

bodies was proven only under a certain, rather weak, constraint on the diameter

of K in isotropic position. We show in Example 4.9 that there exist 2-convex
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bodies in R
n for which this constraint is violated. In fact, we show that there ex-

ist such bodies of volume 1 whose diameter in isotropic position is greater than

cn (where c > 0 is a universal constant). Our idea is to put K in another posi-

tion, namely Löwner’s minimal diameter position; we show in Proposition 4.10

that in this position the diameter is not larger than C
λ n

1−λ, where λ depends

only on α, the 2-convexity constant of K and C > 0 is a universal constant. We

conclude Proposition 1.5 by using Theorem 5.3 taken from [Mil06b], which gen-

eralizes a Theorem from [ABP03] about the existence of Gaussian marginals, by

removing the assumption that K is in isotropic position. Further developments

on the existence of Gaussian marginals of uniformly convex bodies are discussed

in [Mil06b].

The rest of the paper is organized as follows. In Section 2 we discuss the

basic volumetric properties of 2-convex bodies. In Section 3 we consider natu-

ral operations which preserve 2-convexity and its dual notion of 2-smoothness,

and prove generalized versions of Proposition 1.2. Section 4 treats various posi-

tions of 2-convex bodies and their interrelations. Section 5 deals with Gaussian

marginals. Throughout the text, we denote by c, C, c′ etc. some positive univer-

sal constants, whose value may change from line to line. We will write A ≈ B to

signify that C1A ≤ B ≤ C2A with universal constants C1, C2 > 0. We denote

by Dn and Sn−1 the Euclidean unit ball and sphere in R
n, respectively.

Acknowledgments. Emanuel Milman would like to sincerely thank his su-

pervisor Prof. Gideon Schechtman for many informative discussions.

2. Volumetric properties

Let K ⊂ R
n be a centrally-symmetric convex body. Denote by ‖·‖K the

norm whose unit ball is K. The dual norm to ‖·‖K is defined as ‖x‖∗K =

supy∈K |〈x, y〉|, and its unit ball, referred to as the polar body to K, is denoted

by K◦.

An equivalent well-known characterization forK to be 2-convex with constant

α (e.g., [LT79, Lemma 1.e.10]) is that for all x, y ∈ R
n:

(2.1) ‖x‖2
K + ‖y‖2

K − 2

∥∥∥∥
x+ y

2

∥∥∥∥
2

K

≥ α′

2
‖x− y‖2

K ,

where the relation between α and α′ is summarized in the following:
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Lemma 2.1: If K is 2-convex with constant α, then (2.1) holds with α′ = α. If

(2.1) holds for all x, y ∈ R
n, then K is 2-convex with constant α = α′/8.

It is also known ([Nor60]) that the Euclidean ball has the best possible mod-

ulus of convexity, implying in particular that α ≤ 1/8.

A basic observation due to Gromov and Milman ([GM87], see also [AdRBV98],

for a simple proof) is that if K is uniformly convex with modulus of convexity

δK , and T ⊂ K with |T | ≥ |K|/2, then for any ε > 0:

(2.2) |(T + εK) ∩K|/|K| ≥ 1 − 2e−2nδK(ε).

We will exploit (2.2) and obtain several interesting consequences regarding mass

distribution in 2-convex sets. At the heart of our argument is the following

lemma, which is a direct consequence of (2.2). We prefer to give a self-contained

proof, as this is a good opportunity to recreate the elegant argument from

[AdRBV98]. This lemma was also proved in [Sch95].

Lemma 2.2: Let K ⊂ R
n be a centrally-symmetric convex body. Assume that

K is 2-convex with constant α, and that |K| = 1. Fix θ ∈ Sn−1 and denote

w = ‖θ‖∗K . Then for any t > 0

Vol {x ∈ K : 〈x, θ〉 > t} ≤ 2 exp
(
−2αn(t/w)2

)
.

Proof. Let A(t) = {x ∈ K : 〈x, θ〉 > t} and put B = {x ∈ K; 〈x, θ〉 < 0}. Note

that if x ∈ A(t), y ∈ B then ‖x − y‖K ≥ t/w. According to the definition of

2-convexity,
B +A(t)

2
⊂ (1 − α(t/w)2)K.

By the Brunn–Minkowski inequality,

√
|B| · |A(t)| ≤

∣∣∣∣
B +A(t)

2

∣∣∣∣ ≤
(
1 − α(t/w)2

)n ≤ exp (−αn(t/w)2).

Since |B| = 1/2, we have:

|A(t)| ≤ 2 exp (−2αn(t/w)2).

Next, we present several consequences of Lemma 2.2. The first one is the

following observation.

Lemma 2.3: Let K ⊂ R
n be a centrally-symmetric convex body. Assume that

K is 2-convex with constant α and volume 1, and that K is isotropic. Then

c
√
α
√
nLKDn ⊂ K,
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where c > 0 is a universal constant.

Proof. Let θ ∈ Sn−1 be arbitrary. For t ∈ R set

A(t) = K ∩ {x ∈ R
n : 〈x, θ〉 < t} ,

and denote f(t) = |A(t)|. As before, we use w = ‖θ‖∗K to denote the width of

K in direction θ. By Lemma 2.2, we see that for t > 0

(2.3) f(t) ≥ 1 − 2 exp (−2αn(t/w)2).

On the other hand, f ′(t) = |K ∩ {〈x, θ〉 = t}| is a log-concave function by

Brunn–Minkowski which is even, and therefore attains its maximum at 0. Since

f ′(0) ≈ 1/LK (e.g., [MP88]), we see that

(2.4) f(t) ≤ f(0) + tf ′(0) ≤ 1/2 + ct/LK .

Choosing t = LK/4c and combining (2.3) and (2.4), we see that w≥ c′
√
α
√
nLK .

Since the direction θ ∈ Sn−1 was arbitrary, the lemma follows.

Lemma 2.3 entails Proposition 1.1 and Proposition 1.3 at once. Indeed, since

|√nDn|1/n ≈ 1 and |K| = 1, Lemma 2.3 implies that LK ≤ c/
√
α. Proposition

1.1 immediately follows (see, e.g., [MP88]). Since also c < LK (e.g. [MP88]),

then Lemma 2.3 implies that

c
√
α
√
nD ⊂ K,

and Proposition 1.3 is established. Note that it is quite unusual for a convex

body to contain a large Euclidean ball in isotropic position, even when the

body has a bounded volume-ratio. For instance, consider the convex body

K = {x ∈ R
n; |x| ≤ √

n, |x1| ≤ 1}, and let K̃ be an isotropic linear image of K.

It is easily seen that K̃ does not contain a ball of radius larger than c, although

K is isomorphic to an ellipsoid, and clearly has a finite volume-ratio.

Another consequence of Lemma 2.2 is the following proposition. For θ ∈
Sn−1, we define the ψ2-norm of the linear functional 〈·, θ〉 with respect to the

uniform measure on K as

‖〈·, θ〉‖Lψ2(K)
:= inf

{
λ > 0 :

1

|K|

∫

K

e〈x,θ〉2/λ2

dx ≤ 2

}
.

The Lp-norm is defined by

‖〈·, θ〉‖Lp(K) :=

(
1

|K|

∫

K

|〈x, θ〉|p dx
)1/p

.
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It is well-known (e.g., [JSZ85, Proposition 3.6]) that

‖〈·, θ〉‖Lψ2(K)
≈ sup

p≥2

‖〈·, θ〉‖Lp(K)√
p

,

implying, in particular, that

(2.5) ‖〈·, θ〉‖Lψ2(K)
≥ C1

‖θ‖∗K√
n
,

since ‖θ‖∗K ≈ ‖〈·, θ〉‖Ln(K) (e.g. [Pao02]). By Lemma 2.2, we readily see that

1

|K|

∫

K

e
〈x,θ〉2

λ2 dx = 1 +
1

|K|

∫ ∞

1

Vol

{
x ∈ K; e

〈x,θ〉2

λ2 > t

}
dt

≤ 1 +

∫ ∞

1

e−αn(λ/‖θ‖∗
K

)2 log tdt,

so choosing λ = C2
‖θ‖∗

K√
α
√

n
for an appropriate value of C2 > 0, the latter expres-

sion is smaller than 2. We conclude

Proposition 2.4: Let K ⊂ R
n be a centrally-symmetric 2-convex body with

constant α. Then for all θ ∈ Sn−1

C1
‖θ‖∗K√
n

≤ ‖〈·, θ〉‖Lψ2(K)
≤ C2

‖θ‖∗K√
α
√
n
,

where C1, C2 > 0 are two universal constants.

Proposition 2.4 provides us with a way to find directions θ ∈ Sn−1 for

which Vol{x ∈ K; 〈x, θ〉 ≥ t} decays in a sub-gaussian rate, as reflected by

‖〈·, θ〉‖Lψ2(K)
. As a first application, note that for any convex body of volume

one, there exists a direction in which the width is smaller than C
√
n (otherwise

the body would contain a Euclidean ball of volume greater than one). To-

gether with a straightforward application of Markov’s inequality, and denoting

M∗(K) =
∫

Sn−1 ‖θ‖∗K dσ(θ), we conclude the following immediate corollary of

Proposition 2.4.

Corollary 2.5: Let K ⊂ R
n be a centrally-symmetric convex body. Assume

that K is 2-convex with constant α and volume 1. Then there exists a universal

constant C > 0 satisfying

(1) There exists a θ ∈ Sn−1 satisfying

‖〈·, θ〉‖Lψ2(K)
≤ C/

√
α .
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(2)

σ
{
θ ∈ Sn−1 : ‖〈·, θ〉‖Lψ2

(K) ≤ C
M∗(K)√
α
√
n

}
≥ 1

2
.

In Section 4, we will see several positions of a 2-convex body K of volume 1

for which M∗(K) ≤ C
√
n. The last corollary implies that in these positions, at

least half of the directions have ψ2-decay. We say that a body satisfying

‖〈·, θ〉‖Lψ2
(K) ≤ A · |K|1/n

for all θ ∈ Sn−1, is a ψ2 body (with constant A). In general, a 2-convex body is

not a ψ2 body. Indeed, as apparent from (2.5), a ψ2 body (with constant A) of

volume 1 always satisfies diam(K) ≤ CA
√
n, but any lnp for p < 2 (normalized

to have volume 1) already fails to satisfy this (with a universal constant A)

for large enough n. Here and henceforth, diam(K) denotes the diameter of K.

Nevertheless, we can still say the following

Proposition 2.6: Let K ⊂ R
n be a centrally-symmetric convex body. Assume

that K is 2-convex with constant α, has volume 1 and that it is isotropic. Then

a random ⌊n/2⌋-dimensional section of K is a ψ2-body with high probability.

Proof. By definition, any section of K is a 2-convex body with the same con-

stant. By Proposition 1.3, the isotropic position is also a finite volume-ratio

position for K, and c
√
α
√
nDn ⊂ K. But by a classical result of [Sza80] and

[STJ80] (based on [Kaš77]), a random ⌊n/2⌋-dimensional section L ∩ E of a

convex body L containing Dn is isomorphic to a Euclidean ball, and, in par-

ticular, satisfies diam(L ∩ E) ≤ C(|L|/|Dn|)2/n with probability greater than

1 − (1/2)n. Therefore,

(2.6) c
√
α
√
n(Dn ∩ E) ⊂ K ∩ E ⊂ C′

√
α

√
n(Dn ∩E)

with the same probability. Applying Proposition 2.4 to K ∩ E and using the

left-hand-side of (2.6) to compensate for the volume of K ∩E, we see that

‖〈·, θ〉‖Lψ2(K∩E)
≤ C′

α3/2
|K ∩ E|2/n

for all θ ∈ Sn−1 ∩ E. This concludes the proof.
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3. Operations preserving 2-convexity

We have already seen that, by definition, any section of a 2-convex body with

constant α is itself a 2-convex body with the same constant. In this section we

will consider several additional natural operations which preserve 2-convexity

and the dual notion of 2-smoothness, and conclude with several new results on

the isotropic constant of different families of bodies.

The first natural operation to consider is taking projections. Since this is the

dual operation to taking sections, it will be convenient to first introduce the

dual notion to 2-convexity, which is 2-smoothness. The modulus of smoothness

of K is defined as the following function for τ > 0

(3.1) ρK(τ) = sup
{‖x+ y‖K + ‖x− y‖K

2
− 1 : ‖x‖K ≤ 1, ‖y‖K ≤ τ

}
.

A body K is called “2-smooth with constant β” (see, e.g. [LT79, Chapter 1.e]),

if for all τ > 0

(3.2) ρK(τ) ≤ βτ2.

It is well-known (e.g. [LT79]) that the modulus of smoothness is dual to the

modulus of convexity (this can be carefully formalized using Legendre trans-

forms). We summarize Propositions 1.e.2 and 1.e.6 from [LT79] in the following

Lemma 3.1: Let K be a centrally-symmetric convex body in R
n. Then K is

2-convex with constant α if and only if K◦ is 2-smooth with constant 1/(16α).

We will frequently refer to the Blaschke–Santalo inequality ([San49], the right

hand side below) and its reverse form due to Bourgain–Milman ([BM87], the

left hand side below), which together state that for any convex body K:

c ≤
( |K|
|Dn|

)1/n( |K◦|
|Dn|

)1/n

≤ 1.

Lemma 3.1, coupled with the Blaschke–Santalo inequality or its reverse form,

imply that we can translate many volumetric results on 2-convex bodies to

2-smooth bodies. In particular, Proposition 1.3 translates to the fact that 2-

smooth bodies have finite outer-volume-ratio. We define the outer-volume-

ratio of a body K as

o.v.r.(K) = inf
E⊃K

(|E|/|K|)1/n,
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where the infimum runs over all ellipsoids that contain K. If o.v.r.(K) < C, for

some universal constant C > 0, it is customary to say that K has finite outer-

volume-ratio. It is well known (e.g. [MP88]) that LK ≤ C′o.v.r.(K) for any

convex body K. Combining everything together, we have the following useful:

Proposition 3.2: Let K be a 2-smooth convex body with constant β. Then

o.v.r.(K) ≤ C
√
β. In particular, LK ≤ C′√β.

Note that if K ⊂ T then o.v.r.(K) ≤ (|T |/|K|)1/no.v.r.(T ). The following is

therefore an immediate corollary of Proposition 3.2:

Corollary 3.3: Let K be a centrally-symmetric convex body in R
n. Then:

LK ≤ C inf

{
√
β
( |T |
|K|

)1/n
∣∣∣∣

K ⊂ T,

T is 2-smooth with constant β

}

We can now turn to investigate the action of taking projections of 2-convex

and 2-smooth bodies. For a subspace E ⊂ R
n, we denote by ProjE the or-

thogonal projection onto E. As evident from the definitions, any section of a

2-smooth body with constant β is itself a 2-smooth body with the same con-

stant. By passing to the polar body and using Lemma 3.1, the duality between

sections and projections immediately implies:

Lemma 3.4: Let K ⊂ R
n be a 2-convex (2-smooth) body with constant γ.

Then so is ProjE(K), with the same constant γ, for any subspace E ⊂ R
n.

Using Lemma 3.4, a remarkable consequence of Proposition 2.4 is that the

ψ2-norm of the linear functional 〈·, x〉 on a projection ProjE(K) of a 2-convex

body K, essentially depends (up to universal constants) only on x ∈ E and not

on the subspace E. More precisely,

Proposition 3.5: Let K ⊂ R
n be a 2-convex body with constant α, and let

E be a k-dimensional subspace. Then for any x ∈ E

C1 ‖x‖∗K ≤ ‖〈·, x〉‖Lψ2(ProjE (K))

√
k ≤ C2

1√
α
‖x‖∗K

This is one of the rare cases where we can deduce volumetric information on

ProjE(K) from that of K. Typically, these two bodies have different volumetric

behaviour.
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Let us consider other natural operations which preserve 2-convexity. Unfor-

tunately, the Minkowski sum is a bad candidate for this. Indeed, even in R
2,

the sum of two very narrow ellipsoids which are perpendicular to each other,

may be brought arbitrarily close to a square, which is not 2-uniformly convex.

Nevertheless, there exists a well-known natural summation operation, which

actually preserves both 2-uniform convexity and 2-uniform smoothness. Recall

that the 2-Firey sum of two convex bodies K and T , denoted by K +2 T , is

defined as the unit ball of the norm satisfying

‖z‖2
K+2T = inf

z=x+y
‖x‖2

K + ‖y‖2
T .

It is easy to see that the dual norms satisfy

(‖z‖∗K+2T )2 = (‖z‖∗K)2 + (‖z‖∗T )2.

We will refer to the latter operation as 2-Firey intersection, and denote the

2-Firey intersection of K and T as K ∩2 T . Note that (K ∩2 T )◦ = K◦ +2 T
◦.

Lemma 3.6: Let K and T be 2-convex (smooth) bodies with constants γK and

γT , respectively. Then so is their 2-Firey sum K +2 T and intersection K ∩2 T ,

with constant min{γK , γT }/8 (max{γK , γT } · 8).

Proof. Obviously, there is no loss in generality in assuming that γK = γT = γ.

Since (K ∩2 T )◦ = K◦ +2 T
◦, Lemma 3.1 implies that the case of 2-smooth

bodies follows from the case of 2-convex bodies by duality. We will therefore

restrict ourselves to the latter case, and assume that K and T are 2-convex with

constant γ.

By Lemma 2.1, we have for G = K,T and for all x, y ∈ R
n

(3.3) ‖x‖2
G + ‖y‖2

G − 2

∥∥∥∥
x+ y

2

∥∥∥∥
2

G

≥ γ

2
‖x− y‖2

G .

Summing these two inequalities for G = K and G = T , we see that (3.3) is also

satisfied for G = K ∩2 T . Using Lemma 2.1 again, this implies that K ∩2 T is

2-convex with constant γ/8. Next, for any z1, z2 ∈ R
n, write zi = xK

i + xT
i so

that

‖zi‖2
K+2T =

∥∥xK
i

∥∥2

K
+

∥∥xT
i

∥∥2

T
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(by compactness the infimum is achieved). By Lemma 2.1, we know that for

G = K,T

∥∥xG
1

∥∥2

G
+

∥∥xG
2

∥∥2

G
≥ 2

∥∥∥∥
xG

1 + xG
2

2

∥∥∥∥
2

G

+
γ

2

∥∥xG
1 − xG

2

∥∥2

G
.

Summing these two inequalities forG = K andG = T and denoting Z = K+2T ,

we have

‖z1‖2
Z + ‖z2‖2

Z

=
∥∥xK

1

∥∥2

K
+

∥∥xK
2

∥∥2

K
+

∥∥xT
1

∥∥2

T
+

∥∥xT
2

∥∥2

T

≥ 2
(∥∥∥∥

xK
1 + xK

2

2

∥∥∥∥
2

K

+

∥∥∥∥
xT

1 + xT
2

2

∥∥∥∥
2

T

)
+
γ

2

(∥∥xK
1 − xK

2

∥∥2

K
+

∥∥xT
1 − xT

2

∥∥2

T

)

≥ 2

∥∥∥∥
z1 + z2

2

∥∥∥∥
2

Z

+
γ

2
‖z1 − z2‖2

Z ,

where the last inequality follows from the definition of Z = K+2 T and the fact

that z1 + z2 = (xK
1 + xK

2 ) + (xT
1 + xT

2 ) and z1 − z2 = (xK
1 − xK

2 ) + (xT
1 − xT

2 ).

Lemma 2.1 implies that K +2 T is 2-convex with constant γ/8.

Remark 3.7: It is important to emphasize that the additional factor of 8 appear-

ing in the Lemma is immaterial, and that the Lemma holds in full generality

when summing (intersecting) an arbitrary number of bodies (with the same

constant factor of 8).

We can now summarize our bounds for the isotropic constant in the following

statements. For a Banach space X , we denote by SQn(X) the class of unit

balls of n-dimensional subspaces of quotients of X . We denote F 0
2 SQn(X) =

SQn(X), and by induction

F k+1
2 SQn(X) =

{ l∧

i=1

mi⊕

j=1

Ki
j :

{
Ki

j

}
⊂ F k

2 SQn(X)

}
,

where
∧

and
⊕

denote 2-Firey intersection and sum, respectively. We set

F2SQn(X) = ∪∞
i=0F

i
2SQn(X). Note that it is possible to make the class

F2SQn(X) even richer, by alternately taking subspaces, quotients, 2-Firey sums

and 2-Firey intersections (since the operation of 2-Firey sum is not distributive

with respect to taking subspace or 2-Firey intersection) starting from X , but

this is a complication which we wish to avoid. Lemmas 3.4 and 3.6 together

with Remark 3.7, show that if X is 2-convex (2-smooth) with constant α (β),
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then so is every member of F2SQn(X) with constant α/8 (8β). Corollary 3.3

therefore implies

Theorem 3.8: Let K be a centrally-symmetric convex body in R
n, and let X

be a 2-smooth Banach space with constant β. Then

LK ≤ C
√
β inf{(|T |/|K|)1/n : K ⊂ T, T ∈ F2SQn(X)}.

Consider X = Lp for 2 ≤ p < ∞ in Theorem 3.8. Note that X∗ = Lq with

q = 1+1/(p−1), for which it is known (e.g. [LT79, p. 63]) that X∗ is 2-convex

with constant equivalent to 1/(p − 1). By Lemma 3.1 this implies that X is

2-smooth with constant bounded by C(p− 1). We therefore have

Corollary 3.9: Let K be a centrally-symmetric convex body in R
n. Then

LK ≤ C inf

{
√
p

( |T |
|K|

)1/n
∣∣∣∣∣K ⊂ T, T ∈ F2SQn(Lp), p ≥ 2

}
.

This is a generalization of one half (the range p ≥ 2) of a Theorem of Junge

([Jun94], see also [Mil06a]):

Theorem (Junge):

LK ≤ C inf

{
√
p q

( |T |
|K|

)1/n
∣∣∣∣∣

K ⊂ T , T ∈ SQn(Lp) ,

1 < p <∞ , 1/p+ 1/q = 1

}
.

In fact, Junge showed that Lp may be replaced by any Banach space X with

finite type and bounded gl2(X) (the Gordon–Lewis constant of X), in which

case
√
p q above should be replaced by some constant depending on X .

We can also improve the second half of Junge’s Theorem (in the range 1 <

p ≤ 2) by replacing the factor of q by
√
q. Unfortunately, with our approach we

have to insist that K itself is in F2SQn(Lp). Our version reads as follows.

Theorem 3.10: Let K ∈ F2SQn(Lp) for 1 < p ≤ 2, and let q be given by

1/p+ 1/q = 1. Then

LK ≤ C
√
q.

The latter is an immediate corollary of the the fact that Lp for 1 < p ≤ 2 is

2-convex with constant equivalent to p−1 (e.g. [LT79, Chapter 1.e]), combined

with the following general Theorem, which is a consequence of Proposition 1.1.
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Theorem 3.11: Let X be a 2-convex Banach space with constant α, and let

K ∈ F2SQn(X). Then:

LK ≤ C/
√
α.

Another interesting example is obtained by taking X to be the space of all m

by m complex or real matrices, equipped with the norm ‖A‖ = (tr(AA∗)p/2)1/p,

the so-called lp-Schatten-Class, which will be denoted by Sm
p . It was observed

in [KMP98] that the isotropic constants of these spaces are uniformly bounded

(in m), which is especially interesting in the range 1 ≤ p < 2, since for p ≥ 2 it

is known that the unit ball of Sm
p has finite outer volume-ratio. In the former

range, it has been recently shown in [GP04] that, in particular, the isotropic con-

stants of several special subspaces of Sm
p are also uniformly bounded. Although

our method does not extend to p = 1, we can show the following result, which

demonstrates that the same is true for any subspace of quotient of Sm
p , provided

that p is bounded away from 1. The modulus of convexity (and smoothness) of

Sm
p was estimated by N. Tomczak–Jaegermann in [TJ74], where it was shown

that δSmp ≈ δLp . It follows that Sm
p is 2-convex with constant equivalent to p−1

for 1 < p ≤ 2, which together with Theorem 3.11 gives

Theorem 3.12: Let K ∈ F2SQn(Sm
p ) for 1 < p ≤ 2 and m ≥ n, and let q be

given by 1/p+ 1/q = 1. Then

LK ≤ C
√
q.

It is clear that the case p = 1 in Theorem 3.10 and Theorem 3.12 must

serve as a break-down point for our method. Indeed, since Sm
1 contains lm1 as

a subspace (of the diagonal matrices), and since every convex body may be

approximated as the unit ball of a quotient of lm1 for large-enough m, or simply

as the quotient of L1, a similar result for p = 1 in either theorem would solve

the Slicing Problem.

4. Equivalence between positions of 2-convex bodies

For the results of this section, we recall a few basic notions from Banach space

theory. The (Rademacher) type-p constant of a Banach spaceX (for 1 ≤ p ≤ 2),

denoted Tp(X), is the minimal T > 0 for which

(
E‖

m∑

i=1

εixi‖2
)1/2

≤ T
( m∑

i=1

‖xi‖p
)1/p
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for any m ≥ 1 and any x1, . . . , xm ∈ X , where {εi} are independent, symmetric

±1-valued random variables and E denotes expectation. Similarly, the cotype-q

constant of X (for 2 ≤ q ≤ ∞), denoted Cq(X), is the minimal C > 0 for which:

(
E‖

m∑

i=1

εixi‖2
)1/2

≥ 1

C

( m∑

i=1

‖xi‖q
)1/q

,

for any m ≥ 1 and x1, . . . , xm ∈ X . We say that X has type p (cotype q)

if Tp(X) < ∞ (Cq(X) < ∞). We also say that X is of type p (cotype q) if

p = sup {p′;X has type p′} (q = inf {q′;X has cotype q′}).
Let L2({−1, 1}m

, X) denote the space of X-valued functions on the discrete

cube {−1, 1}m
, equipped with the norm (E ‖f(ε1, . . . , εm)‖2

)1/2. We denote by

Radm(X) the Rademacher projection on L2({−1, 1}m , X) (see [MS86]), and

denote ‖Rad(X)‖ = supm ‖Radm(X)‖ where ‖Radm(X)‖ is the operator norm

of Radm(X). By duality, it is easy to verify that ‖Rad(X∗)‖ = ‖Rad(X)‖, and

it is clear that ‖Radm(X)‖ = supE⊂X ‖Radm(E)‖ where the supremum runs

over all finite-dimensional subspaces of X .

One of the most important results in the local-theory of Banach spaces is a

theorem by Pisier who showed that ‖Rad(X)‖ may be bounded from above by

an (explicit) function of Tp(X) when p > 1, concluding that ‖Rad(X)‖ < ∞
when X has type p > 1. When p = 2, there is a much easier argument, going

back to a remark at the end of the work by Maurey and Pisier [MP76] (see also

[BTV00, Remark 2.11] for an explicit proof), showing (without any constants)

Lemma 4.1: ‖Rad(X)‖ ≤ T2(X).

The next lemma, which gives a non-quantitative estimate of the opposite

inequality (for the general p case) using a compactness argument, is a known

consequence of the Maurey–Pisier Theorem [MP76]. We have not been able to

find a reference for it, so we sketch the proof below.

Lemma 4.2: There exists a function C(R) : R+ → R+ such that any finite-

dimensional Banach space X with ‖Rad(X)‖ ≤ R satisfies Tp(R)(X) ≤ C(R)

with p(R) = 1 + 1/C(R).

Sketch of proof. Assume that this is not true for some R > 0. This means

that there exist finite-dimensional Banach spaces Xi with ‖Rad(Xi)‖ ≤ R
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and T1+1/i(Xi) > i. The latter easily implies that dim(Xi) → ∞, since al-

ways Tp(Xi) ≤ T2(Xi) ≤
√

dim(Xi) for any 1 ≤ p ≤ 2 (Xi is
√

dim(Xi)-

isomorphic to a Hilbert space Hi by John’s Theorem, and T2(Hi) = 1). We

now construct an infinite dimensional Banach space X as the l2 sum of the

Xi’s, i.e., for x = (xi)i≥1 with xi ∈ Xi define ‖x‖X = (
∑

i≥1 ‖xi‖2
Xi

)1/2 and set

X = {x; ‖x‖X <∞} endowed with the norm ‖·‖X . It is elementary to check

that ‖Rad(X)‖ ≤ R, and since X contains each Xi as a subspace we must have

that X is of type 1. The latter implies by the Maurey–Pisier Theorem (actually

we only need the type 1 case, which is due to Pisier [Pis73]) that X contains

(1 + ǫ) isometric copies of lm1 for arbitrary ǫ > 0 and m, and as a consequence

‖Rad(X)‖ ≥ supm ‖Rad(lm1 )‖ = ∞. We arrive to a contradiction, so the asser-

tion is proved. Note that the choice of p(R) as a function of C(R) was arbitrary,

and any function p(R) decreasing to 1 as C(R) tends to infinity works equally

well.

Let us return to the study of 2-convex bodies. We recall the following classical

result (e.g., [LT79, Theorem 1.e.16]). For completeness, we sketch the proof.

Lemma 4.3:

(1) Let K be a 2-convex body with constant α. Then C2(XK) ≤ C/
√
α.

(2) Let K be a 2-smooth body with constant β. Then T2(XK) ≤ C
√
β.

Proof. (1) easily follows from the equivalent characterization (2.1) of a 2-convex

body, which asserts that for any x1, x2 ∈ R
n

E ‖ε1x1 + x2‖2
=

1

2
(‖x2 + x1‖2

+ ‖x2 − x1‖2
) ≥ α ‖x1‖2

+ ‖x2‖2
.

Hence by induction, since α < 1

E

∥∥∥∥∥

m∑

i=1

εixi

∥∥∥∥∥

2

≥ α

m∑

i=1

‖xi‖2

for any x1, . . . , xm ∈ R
m, which concludes the proof of (1) (even without a

constant!). (2) follows either by duality or similarly from the equivalent char-

acterization of a 2-smooth body (e.g., [BL00a, Theorem A.7]):

‖x+ y‖2 + ‖x− y‖2 − 2 ‖x‖2 ≤ Cβ ‖y‖2 ,

for every x, y ∈ R
n.

We are now ready to conclude the following useful lemma.
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Lemma 4.4: Let K be a 2-convex body with constant α. Then

(1)

‖Rad(XK)‖ ≤ C/
√
α.

(2) There exists a p > 1 which depends on α only, such that

Tp(XK) ≤ 1/(p− 1).

Proof. By Lemma 3.1, K◦ is 2-smooth with constant 1/(16α), and so by Lem-

mas 4.1 and 4.3 we see that

‖Rad(X)‖ = ‖Rad(X∗)‖ ≤ T2(X
∗) ≤ C√

α
,

which concludes the proof of (1). Applying Lemma 4.2, we immediately deduce

(2).

Lemmas 4.3 and 4.4 allow us to deduce several interesting results about 2-

convex bodies. By a classical result of Figiel and Tomzcak-Jaegermann on the

l-position ([FTJ79]), for any convex body K there exists a position for which

M(K)M∗(K) ≤ C ‖Rad(XK)‖, and in fact this is satisfied in the minimal

mean-width position. The latter is defined (up to orthogonal rotations) as

the volume-preserving affine image of K for which M∗(K) is minimal. Recall

that we always have:

(4.1)
1

M(K)
≤ Vol.rad. (K) ≤M∗(K),

where Vol.rad. (K) = (|K| / |Dn|)1/n; the first inequality follows from Jensen’s

inequality while the second is Urysohn’s inequality. We therefore deduce that in

the minimal mean-width position, a 2-convex body K with constant α satisfies:

(4.2) M∗(K) ≤ C√
α

Vol.rad. (K)

and

(4.3) M(K) ≤ C√
α

Vol.rad. (K)
−1
,

which are essentially the best possible by (4.1). We will refer to (4.2) as “M∗(K)

is bounded”, omitting the reference to the volume-radius. As we shall see, there

are many advantages of working with a position in which M∗(K) is bounded.

Our next Proposition shows that in the case of 2-convex bodies, K must be

essentially isotropic whenever we have a good upper bound on M∗(K). For
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convenience, we define M∗
2 (K) = (

∫
Sn−1(‖θ‖∗K)2dσ(θ))1/2, which is well-known

to be equivalent to M∗(K) (by Kahane’s inequality for instance).

Proposition 4.5: For any 2-convex body K with constant α and volume 1,

we have ∫

K

|x| dx ≤ C
M∗(K)√

α
.

Proof.

∫

K

|x| dx ≤
(∫

K

|x|2 dx
)1/2

=
√
n

(∫

K

∫

Sn−1

〈x, θ〉2 dσ(θ)dx

)1/2

=
√
n

(∫

Sn−1

∫

K

〈x, θ〉2 dx dσ(θ)

)1/2

=
√
n

(∫

Sn−1

‖〈·, θ〉‖2
L2(K) dσ(θ)

)1/2

≤ C
√
n

(∫

Sn−1

‖〈·, θ〉‖2
Lψ2

(K) dσ(θ)

)1/2

≤ C′
√
α

(∫

Sn−1

(‖θ‖∗K)2dσ(θ)

)1/2

,

where we used Proposition 2.4 in the last inequality. The last term is equal to
C′
√

α
M∗

2 (K), which is majorized by C′′
√

α
M∗(K).

The last proposition has an interesting consequence regarding 2-Firey sums

of 2-convex bodies in minimal mean-width position, or in any bounded M∗

position in general.

Corollary 4.6: Let K and T be 2-uniformly convex bodies, such that

M∗
2 (K) ≤ CKVol.rad. (K) and M∗

2 (T ) ≤ CT Vol.rad. (T ) (and, therefore, es-

sentially isotropic). Then M∗
2 (K +2 T ) ≤ max(CK , CT )Vol.rad. (K +2 T ). In

particular, K +2 T is essentially isotropic.

Proof. Notice that (M∗
2 )2 is clearly additive with respect to 2-Firey sums,

whereas by [Lut93] |K +2 T |2/n ≥ |K|2/n + |T |2/n. The claim then easily fol-

lows.

An additional property of any position for which M∗(K) is bounded,

is that it automatically satisfies half of the conditions of being in a 2-regular
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M-position. Recall that a convex body K in R
n is said to be in a-regular M-

position (0 < a ≤ 2) if its homothetic copy K ′, normalized so that |K ′| = |Dn|,
satisfies:

(4.4) N(K ′, tDn) ≤ exp(Cn/ta) and N((K ′)◦, tDn) ≤ exp(Cn/ta),

for t ≥ 1, where N(K,L) is the covering number of K by L (see [GM01]) and

C > 0 is a universal constant. It was shown by Pisier ([Pis89]) that an a-regular

M-position for 0 < a < 2 always exists (with a constant C in (4.4) depending

only on a). When M∗(K) is bounded and |K| = |Dn|, by Sudakov’s inequality

([GM01]):

N(K, tDn) ≤ exp(Cn(M∗(K)/t)2) ≤ exp(Cn/t2)

for t ≥ 1, so half of the condition for being in a 2-regular M-position is satisfied.

In general, the other half of the condition, namely

(4.5) N(K◦, tDn) ≤ exp(Cn/t2),

does not follow just from knowing that M∗(K) is bounded. Nevertheless, we

mention two cases where this would follow. If K is in minimal mean-width

position and |K| = |Dn|, in which case both M∗(K) and M(K) are bounded

using (4.2) and (4.3), then (4.5) follows from Sudakov’s inequality applied to

K◦. Another case is when K is in a finite volume-ratio position with bounded

M∗(K) (remember that we know that K has finite volume-ratio), in which

case (4.5) is trivially satisfied. The second case, if it exists, will be preferred

over the first, since it adds the finite-volume ratio position property (which is

not guaranteed in general by the minimal mean-width position), implying in

particular that M(K) is bounded.

Luckily, for a 2-convex body, there exists an “all-in-one” position which gives

all of the above mentioned properties: bounded M∗, having finite volume-ratio

(and therefore being in a 2-regular M-position) and essential isotropicity. This

position is exactly John’s maximal-volume ellipsoid position. This follows from

the following useful lemma from [Mil06a] (which appeared first in an equivalent

form in [DMTJ81]).

Lemma 4.7: For any convex body K in John’s maximal-volume ellipsoid posi-

tion, the following holds

M∗
2 (K)b(K) ≤ T2(X

∗
K),

where b(K) = maxθ∈Sn−1 ‖θ‖K .
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For a 2-convex body K with constant α, the polar body is 2-smooth with

constant 1/(16α), and therefore by Lemma 4.3, X∗
K has type 2 with constant

T2(X
∗
K) ≤ C/

√
α. Noting that M∗(K) ≤M∗

2 (K), Lemma 4.7 gives

Corollary 4.8: A 2-convex body K with constant α in John’s maximal-

volume ellipsoid position, satisfies

M∗(K)b(K) ≤ C√
α
.

Since M∗(K)b(K) is invariant under homothety, we may assume above that

|K| = |Dn|, in which case b(K) ≥ 1 (by volume consideration) and M∗(K) ≥ 1

(by Urysohn’s inequality). We therefore see that in John’s maximal-volume

ellipsoid position M∗(K) ≤ C/
√
αVol.rad. (K). The similar bound on b implies

again that K has finite-volume ratio, v.r.(K) ≤ C/
√
α, with the same bound

(up to a possible constant) as in Proposition 1.3. Proposition 4.5 coupled with

the latter bound on M∗(K) in John’s position, imply Proposition 1.4 stated in

the Introduction.

One last additional property that we would like our “all-in-one” position

to satisfy is having a small-diameter: if |K| = |Dn|, we would like to have

diam(K) ≤ C(n/ logn)1/2. The motivation for this requirement comes from

[ABP03], where it was shown that if an isotropic 2-convex body has small-

diameter in the above sense, then most of its marginals are approximately

Gaussian (see [ABP03] or Section 5 for more details). It is easy to check that

this requirement is indeed satisfied by all the lnp unit balls for 1 < p ≤ 2 (nor-

malized to have the appropriate volume).

Unfortunately, the small-diameter requirement is not satisfied for a general

2-convex body in isotropic position, as illustrated by the following

Example 4.9: Let

T =
{

(x, y) ∈ R
2 : x2 + (|y| + 1)

2 ≤ 2
}
.

The set T is 2-convex with constant c, and has two “cusps”, at (1, 0) and (−1, 0).

Denote by K ⊂ R
n the revolution body of T around the y-axis, namely

K =
{
(x1, ..., xn) ∈ R

n :
(
(x2

1 + . . .+ x2
n−1)

1/2, xn

)
∈ T

}
.

It is easy to check that K is 2-convex with constant c′. Let K̃ ⊂ R
n be an

isotropic image of K of volume 1. Then diam(K̃) ≥ c′′n.
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Sketch of proof. Around its “cusp” hyperplane e⊥n , K looks like a two-sided

cone, and therefore half of the volume of K lies inside the slab

{x ∈ R
n : |〈x, en〉| ≤ c(n)/n} with c(n) ≈ 1. But in isotropic position of volume

1, half of the volume of K̃ lies inside slabs of width in the order of LK (and

LK ≈ 1 by Proposition 1.1). This means that we must inflate K by an order of

n in the direction of en when passing to K̃, implying that diam(K̃) ≥ c′′n.

Nevertheless, the following proposition shows that in Löwner’s minimal -

volume outer ellipsoid position, the small-diameter requirement is satisfied, al-

though we are not able to guarantee any of the other “good” properties satisfied

by John’s maximal-volume ellipsoid position. We note that K is in Löwner’s

position if and only if K◦ is in John’s position.

Proposition 4.10: Let K be any 2-convex body with constant α and volume

1. Then there exists a constant λ > 0 which depends only on α, such that in

Löwner’s minimal-volume outer ellipsoid position, diam(K) ≤ C
λ n

1−λ.

Proof. Apply Lemma 4.7 to K◦, which by duality is in John’s maximal-volume

ellipsoid position. Then

M2(K) diam(K) ≤ T2(XK).

Since M2(K) ≥ Vol.rad. (K)
−1

= n1/2 by Jensen’s inequality, it is enough to

show that T2(XK) is bounded by Cn1/2−λ. By Lemma 4.4, we know that there

exists a p > 1 which depends only on α, such that Tp(XK) ≤ 1/(p − 1), so

it remains to pass from type-p to type-2. But this is an easy consequence of

a result by Tomczak–Jaegermann ([TJ79]), who showed that it is enough to

evaluate the type 2 constant of an n-dimensional Banach space on n vectors. If

x1, . . . , xn is any sequence in R
n, then by Hölder’s inequality:

E

∥∥∥∥
n∑

i=1

εixi

∥∥∥∥
K

≤ 1

p− 1

( n∑

i=1

‖xi‖p
K

)1/p

≤ n1/p−1/2

p− 1

( n∑

i=1

‖xi‖2
K

)1/2

.

Therefore T2(XK) ≤ C
λ n

1/2−λ, for λ = 1 − 1/p.

We conclude this section by mentioning that the results of Section 2 imply

that for 2-convex bodies, the isotropic position is a 1-regular M-position. Indeed,

since the isotropic position is also a finite volume-ratio position, the second half

of condition (4.4) is trivially satisfied. The first half is satisfied by the result

from ([Har03] or [Kla05, Proposition 5.4]), which shows that this is always
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the case for any isotropic body for which LK is bounded. Note that [GM98,

Theorem 5.6] (which uses Dudley’s entropy bound) enables us to bound the

mean-width of a convex body in an a-regular M-position, which for a 1-regular

position gives:

M∗(K) ≤ C diam(K)1/2
Vol.rad. (K)1/2 .

Since diam(K) ≤ C
√
nLKVol.rad. (K) in isotropic position (e.g. [MP88]), we

conclude that M∗(K) ≤ C(α)n1/4
Vol.rad. (K) for any 2-convex body K with

constant α in isotropic position. It is still unclear to us whether the isotropic

position is always a 2-regular M-position, which would imply (as above) that

M∗(K) ≤ C(α) log(n)Vol.rad. (K).

To summarize, we have seen the following implications for a 2-convex body:

• Minimal mean-width position implies essential isotropicity and a 2-

regular M-position.

• John’s maximal-volume ellipsoid position implies finite volume-ratio po-

sition, essential minimal mean-width, 2-regular M-position and essential

isotropicity.

• Löwner’s minimal-volume outer ellipsoid position implies ”small-dia-

meter”.

• Isotropic position implies finite volume-ratio position and 1-regular M-

position.

5. Gaussian marginals

Similarly to the 2-convex case, we say that a convex body K is p-convex (with

constant α) if its modulus of convexity satisfies δK(ǫ) ≥ αǫp for all ǫ ∈ (0, 2).

Let us also denote dK = diam(K). It is well-known and easy to see (e.g. [Led01]

or follow the argument in Lemma 2.2) that the Gromov–Milman Theorem (2.2)

immediately implies the following

Lemma 5.1: Let K be a p-convex body with constant α and of volume 1. For

any 1-Lipschitz function f on K denote by Med(f) the median of f , i.e., the

value for which Vol{x ∈ K : f(x) ≥ Med(f)} ≥ 1/2 and Vol{x ∈ K : f(x) ≤
Med(f)} ≥ 1/2. Then

Vol{x ∈ K : f(x) ≥Med(f) + t} ≤ 2 exp(−2αn(t/dK)p).
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Let us denote E(f) =
∫

K
f(x)dx. As in [ABP03], we deduce from Lemma

5.1 that |E(f) −Med(f)| ≤ C dK(αn)−1/p. We therefore have

Vol{x ∈ K : |f(x) − E(f)| ≥ t+ CdK(αn)−1/p} ≤ 4 exp
(
− 2αn

( t

dK

)p)
,

and it is easy to check that this implies:

Lemma 5.2: With the same notations as in Lemma 5.1:

Vol{x ∈ K : |f(x) − E(f)| ≥ t} ≤ 4 exp
(
− 2cpαn

( t

dK

)p)
.

Using this, it was shown in [ABP03] that if K is an isotropic p-convex body

(with constant α) with |K| = 1 and diam(K) ≤ R
√
n, then

Vol
{
x ∈ K :

∣∣∣
|x|√
n
− LK

∣∣∣ ≥ Rt
}
≤ 4 exp(−2cpαntp).

Choosing t = C( log(n)
αn )1/p, this implies:

(5.1) Vol
{
x ∈ K :

∣∣∣
|x|√
n
− LK

∣∣∣ ≥ CR
( log(n)

αn

)1/p}
≤ 1

n
.

The authors of [ABP03] conclude that if R ≪ (αn/ log(n))1/p, (5.1) implies a

concentration of the volume of K inside a spherical shell around a radius of√
nLK . It was shown in [ABP03] that such a concentration implies that most

marginals of the uniform distribution onK will have an approximately Gaussian

distribution (see Theorem 5.3 below). Unfortunately, our investigation of the

case p = 2 shows that this condition on R is not satisfied in general by isotropic

2-convex bodies, as demonstrated by Example 4.9. Nevertheless, Proposition

4.10 shows that in Löwner’s minimal-volume ellipsoid position, we do have

R ≤ Cn1/2−λ/λ where λ depends only on the 2-convexity constant of K. In

this case, the concentration result of [ABP03] still holds, with the minor change

that LK in (5.1) is replaced by
∫

K
|x| dx/√n (note that this value is always

greater than c1LK ≥ c2, e.g. [MP88]). Although K is no longer isotropic, it is

possible to generalize the argument in [ABP03] to a body in arbitrary position.

This is done in [Mil06b], where the following is shown.

Theorem 5.3 (Generalization of [ABP03]): Let K be a centrally-symmetric

convex body in R
n of volume 1, and assume that for some ρ > 0 and ǫ < 1/2:

(5.2) Vol
{
x ∈ K :

∣∣∣
|x|√
n
− ρ

∣∣∣ ≥ ǫρ
}
≤ ǫ.
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For θ ∈ Sn−1 denote gθ(s) = Vol
(
K ∩

{
sθ + θ⊥

})
and let ρ2

θ =
∫ ∞
−∞ s2gθ(s)ds.

Denote the Gaussian density with variance ρ2 by φ(s) = 1√
2πρ

exp(− s2

2ρ2 ) and

let H(θ) = supt>0

∣∣∣
∫ t

−t gθ(s)ds−
∫ t

−t φ(s)ds
∣∣∣. Then for any 0 < δ < c

(5.3) σ
{
θ ∈ Sn−1 : H(θ) ≤ δ + 4ǫ+

c1√
n

}
≥

1 − C1Ciso(K)
√
n logn exp

(
− c2nδ

2

Ciso(K)2

)
,

where

ρmax = maxθ∈Sn−1 ρθ , ρavg =

∫

Sn−1

ρθdσ(θ) , Ciso(K) =
ρmax

ρavg
.

Remark 5.4: As usual, it is easy to verify that ρavg and ρ above are equivalent

to within absolute constants (since ǫ < 1/2).

If T is a volume preserving linear transformation such that K̃ = T (K) is

isotropic, then clearly ρmax =
∥∥T−1

∥∥
op
LK , where ‖·‖op denotes the operator

norm. Since ρ2
avg ≈ 1

n

∫
K
|x|2dx ≥ L2

K (e.g. [MP88]), it follows that Ciso(K) ≤
C

∥∥T−1
∥∥

op
. Hence, knowing that rDn ⊂ K̃ and K ⊂ RDn would imply that

Ciso(K) ≤ CR/r. By Lemma 2.3 and Proposition 4.10, c
√
α
√
nLKDn ⊂ K̃

and K ⊂ Cn1−λ/λ in Löwner’s position, where λ > 0 depends only on α. We

therefore have in this position

Ciso(K) ≤ min
(Cn1/2−λ

√
αλLK

, C
√
n
)
.

Hence, regardless of its a priori diameter, by putting a 2-convex body K with

constant α in Löwner’s position, we deduce by Proposition 4.10, Lemma 5.2 and

Theorem 5.3 that most marginals of K are approximately Gaussian in the above

sense, where the level of proximity (ǫ above) depends only on α. Summarizing,

we have

Theorem 5.5: Let K be a 2-convex body with constant α and volume 1.

Assume that K is in Löwner’s minimal-volume outer ellipsoid position. Then

with the same notation as in Theorem 5.3 and with ρ =
∫

K
|x|dx/√n, we have

for any 0 < δ < c:

σ

{
θ ∈ Sn−1 : H(θ) ≤ δ + 4ǫ+

c1√
n

}
≥ 1 − n5/2 exp

(
−c2αn2λλ2δ2

)
,
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where ǫ = C
√

logn α−1/2λ−1n−λ and λ = λ(α) > 0 depends only on α.

Before concluding, we remark that placing a 2-convex body K in Löwner’s

position is just a convenient “pre-processing” step. In fact, in any position we

always have at least one approximately Gaussian marginal (in the above sense);

it just happens that in Löwner’s position we can show this for “most” marginals

with respect to the Haar probability measure on the unit sphere, and this would

equally be true in an arbitrary position by choosing a different measure (the

one induced by the change of positions, for example). The reason is that the

metric given byH(θ) in Theorem 5.3 is invariant under volume-preserving linear

transformations. More precisely, given such a T , and any body K and ρ > 0, it

is immediate to check that

∫ t

−t

(gK
θ (s) − φρ(s))ds =

∫ t
|T (θ)|

− t
|T (θ)|

(g
T (K)
T(θ)
|T(θ)|

(s) − φρ|T (θ)|(s))ds,

so by Theorem 5.5 we can control the supremum over t > 0 of either expressions

for at least one θ ∈ Sn−1 if K is a 2-convex body in Löwner’s position and

ρ =
∫

K |x|dx/√n.

Remark 5.6: After this manuscript was written, it was proven by the first named

author [Kla06] that the “central limit property,” in the sense of Proposition

1.5, actually holds for all convex bodies. Note, however, that our quantitative

estimates, for the case of 2-convex bodies, are essentially better.
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[GP04] O. Guédon and G. Paouris, Concentration of Mass on the Schatten Classes,

Manuscript, 2004.

[Har03] M. Hartzoulaki, Probabilistic methods in the theory of convex bodies, Ph.D.

thesis, University of Crete, March 2003.

[Hen80] D. Hensley, Slicing convex bodies: Bounds of slice area in terms of the body’s

covariance, Proceedings of the American Mathematical Society 79 (1980),

619–625.

[JSZ85] W. B. Johnson, G. Schechtman and J. Zinn, Best constants in moment inequal-

ities for linear combinations of independent and exchangeable random variables,

The Annals of Probability 13 (1985), 234–253.

[Jun94] M. Junge, Hyperplane conjecture for quotient spaces of lp, Forum Mathematicum

6 (1994), 617–635.
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